Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38475277

RESUMEN

Specific surface area (SSA) is an integral characteristic of the interfacial surface in poly-disperse systems, widely used for the assessment of technological properties in polymer materials and composites. Hygroscopic water content (Wh) is an obligate indicator of dispersed materials prior to any analysis of their chemical composition. This study links both indicators for the purpose of the express assessment of SSA using widely available Wh data, on the example of natural (starch, cellulose) and synthetic (acrylic hydrogels) polymer materials. The standard BET analysis of SSA using water vapor desorption was chosen as a reference method. In contrast to the known empirical correlations, this study is based on the fundamental thermodynamic theory of the disjoining water pressure for the connection of the analyzed quantities. The statistical processing of the results for the new methodology and the standard BET method showed their good compliance in a wide range of SSA from 200 to 900 m2/g. The most important methodological conclusion is the possibility of an accurate physically based calculation of hydrophilic SSA in polymer materials using their Wh data at a known relative humidity in the laboratory.

2.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37688209

RESUMEN

Quantification of the biodegradability of soil water superabsorbents is necessary for a reasonable prediction of their stability and functioning. A new methodological approach to assessing the biodegradability of these polymer materials has been implemented on the basis of PASCO (USA) instrumentation for continuous registration of kinetic CO2 emission curves in laboratory incubation experiments with various hydrogels, including the well-known trade brands Aquasorb, Zeba, and innovative Russian Aquapastus composites with an acrylic polymer matrix. Original kinetic models were proposed to describe different types of respiratory curves and calculate half-life indicators of the studied superabsorbents. Comparative analysis of the new approach with the assessment by biological oxygen demand revealed for the first time the significance of CO2 dissolution in the liquid phase of gel structures during their incubation. Experiments have shown a tenfold reduction in half-life up to 0.1-0.3 years for a priori non-biodegradable synthetic superabsorbents under the influence of compost extract. The incorporation of silver ions into Aquapastus innovative composites at a dose of 0.1% or 10 ppm in swollen gel structures effectively increases their stability, prolonging the half-life to 10 years and more, or almost twice the Western stability standard for polymer ameliorants.

3.
Polymers (Basel) ; 14(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36501525

RESUMEN

The article summarizes multivariate field trials of gel-forming soil conditioners for agriculture and urban landscaping in various climatic conditions from arid (O.A.E., Uzbekistan) to humid (Moscow region, Russia). The field test program included environmental monitoring of weather data, temperature, water-air regimes, salinity, alkalinity, and biological activity of various soils (sandy and loamy sandy Arenosols, Retisols, loamy Serozems), productivity and yield of plants (lawns, vegetables) and their quality, including pathogen infestation. The evolutionary line of polymer superabsorbents from radiation-crosslinked polyacrylamide (1995) to the patented "Aquapastus" material (2014-2020) with amphiphilic fillers and biocidal additives demonstrated not only success, but also the main problems of using hydrogels in soils (biodegradation, osmotic collapse, etc.), as well as their technological solutions. Along with innovative materials, our know-how consisted in the intelligent soil design of capillary barriers for water accumulation and antipathogenic and antielectrolyte protection of the rhizosphere. Gel-forming polymer conditioners and new technologies of their application increase the productivity of plant crops and the quality of biomass by 30-50%, with a 1.3-2-fold saving of water resources and reliable protection of the topsoil from pathogens and secondary salinization. The results can be useful to a wide range of specialists from chemical technologists to agronomists and landscapers.

4.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36365658

RESUMEN

The research analyzes technological properties and stability of innovative gel-forming polymeric materials for complex soil conditioning. These materials combine improvements in the water retention, dispersity, hydraulic properties, anti-erosion and anti-pathogenic protection of the soil along with a high resistance to negative environmental factors (osmotic stress, compression in the pores, microbial biodegradation). Laboratory analysis was based on an original system of instrumental methods, new mathematical models, and the criteria and gradations of the quality of gels and their compositions with mineral soil substrates. The new materials have a technologically optimal degree of swelling (200−600 kg/kg in pure water and saline solutions with 1−3 g/L TDS), high values of surface energy (>130 kJ/kg), specific surface area (>600 m2/g), threshold of gel collapse (>80 mmol/L), half-life (>5 years), and a powerful fungicidal effect (EC50 biocides doses of 10−60 ppm). Due to these properties, the new gel-forming materials, in small doses of 0.1−0.3% increased the water retention and dispersity of sandy substrates to the level of loams, reduced the saturated hydraulic conductivity 20−140 times, suppressed the evaporation 2−4 times, and formed a windproof soil crust (strength up to 100 kPa). These new methodological developments and recommendations are useful for the complex laboratory testing of hydrogels in small (5−10 g) soil samples.

5.
Materials (Basel) ; 11(10)2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279380

RESUMEN

The decomposition of natural and synthetic polymeric materials (peat, humates, biochar, strongly swelling hydrogels and other soil conditioners) in a biologically and chemically active soil environment inevitably leads to a reduced ability to improve the structure, water-retention, absorptive capacity and fertility of artificial soil constructions in urbanized ecosystems and agro landscapes (constructozems). Quantitative assessment of the biodegradation process using field and laboratory incubation experiments, as well as mathematical modeling, showed the possibility of significant (up to 30⁻50% per year) losses of organic matter of constructozems and a corresponding deterioration of soil quality. Incubation experiments that track the carbon dioxide emission rates of polymeric materials under given thermodynamic conditions allow for the estimation of decomposition rates in addition to an exploration on the dependence of such rates on additions of microbial inhibitors. The use of nomographs provide an opportunity to optimize long-term amendment performance in soil constructions by identifying the most favorable depths to apply amendments to ensure stable functioning during desired in-service timelines in the built environment. The results of the study are useful for geo-engineers and landscaping practitioners.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...